
Week 4 - Wednesday



 What did we talk about last time?
 Exceptions
 Catching exceptions
 finally blocks
 The throws keyword







 Sometimes you need to convert a String to an int (or 
double)

 But you don't always know that the String is a properly 
formatted representation of an int

 In these situations, it can be useful to catch a 
NumberFormatException and ask for another String

String number = "eggplant"; // Not a number!
int value = Integer.parseInt(number); // Fails!



 How do we know parseInt() can throw a 
NumberFormatException?
 Read the Java API!

int value = 0;
boolean success = false;
while(!success) {
try {

System.out.print("Enter a number: ");
String number = in.next();
value = Integer.parseInt(number);
success = true;

}
catch(NumberFormatException e) {} // Don't need to do anything

}



 System.exit() is a method that will shut down the entire JVM

 It's roughly equivalent to the exit() function in C
 You should never use System.exit()
 Exception handling is a much better way to end a program
 System.exit() doesn't give a chance for other threads to 

clean themselves up

if(trouble) {
System.exit(-1); // Exits with error code -1
System.out.println("You will never reach this line.");

}





 If you're creating a framework of code, you might want to 
create your own exceptions

 For the Uno game, I created:
 IllegalCardException
 IllegalDrawException
 EmptyDeckException

 You shouldn't create exceptions often, but they're useful if 
you want to name a particular program error



 Exceptions are classes like any other in Java
 They can have members, methods, and constructors
 All you need to do is make a class that extends Exception, the 

base class for all exceptions

 That's it.
 Although it makes them long, it's good style to put the word 
Exception at the end of any exception class name

public class SimpleException extends Exception {
}



 In some cases, you might want a constructor that lets you 
explain why the exception was created

public class TooManyEyeballsException extends Exception {
private final int eyeballs;
public TooManyEyeballsException(int eyeballs) {

this.eyeballs = eyeballs;
}
public int getEyeballs() {

return eyeballs;
}

}



 When you catch an exception, you get a reference to the 
exception object itself

 It's customary (but not required) to call this reference e

try {
if(eyeballs > 2)

throw new TooManyEyeballsException(eyeballs);
}
catch(TooManyEyeballsException e) {
System.out.println("Ugh! " + e.getEyeballs() +

" is too many eyeballs!");
}



 All Exception objects have a Stringmessage inside of them
 If you want your custom exception to have a message, you have to 

call the Exception constructor that takes a String

public class DoomException extends Exception {
public DoomException(String prophecy) {

super(prophecy); // Uses prophecy for message
}

}





 The throw keyword is used to start the exception handling 
process

 You simply type throw and then the exception object that you 
want to throw

 Most of the time, you'll create a new exception object on the spot
 Why would you have one lying around?

 Don't confuse it with the throws keyword!

throw new CardiacArrestException();



 Code you write will seldom throw exceptions explicitly
 Remember than an exception is thrown when something has 

gone wrong
 Most of the time, your code will catch exceptions and deal 

with them
 If you write a lot of library code, you might throw exceptions 

to signal problems
 If you throw a checked exception in your method, you have to 

mark it with a matching throws descriptor



 Here's a method that finds the integer square root of an integer

 If value is negative, an IllegalArgumentExceptionwill 
be thrown

public static int squareRoot(int value) {
if(value < 0)

throw new IllegalArgumentException("Negative value!");
int root = 0;
while(root*root <= value) {

++root;
}
return root - 1;

}





 One way that exceptions interact with inheritance is that all 
exceptions inherit from Exception

 Remember that you can use a child class anywhere you can 
use a parent class

 A catch block for a parent will catch a child exception
 If NuclearExplosionException is a child of 
ExplosionException, an ExplosionException
catch block will catch NuclearExplosionException



 Because a parent catchwill catch a child, you have to organize 
multiple catch blocks from most specific to most general:

try { 
dangerousMethod();

}
catch(FusionNuclearExplosionException e) {

System.out.println("Fusion!");
}
catch(NuclearExplosionException e) {

System.out.println("Nuclear!");
}
catch(ExplosionException e) {

System.out.println("Explosion!");
}
catch(Exception e) { // Don't do this!

System.out.println("Some arbitrary exception!");
}



 Always make exceptions as specific as possible so that you 
don't catch exceptions you didn't mean to

 Always put code in your exception handlers so that something 
happens
 Otherwise, code will fail silently

 Never make a catch block for Exception
 That will catch everything!



 In COMP 1600, we said that you can only override a parent 
method if you write a method that has the same name, takes 
the same parameters, and returns the same type

 That was a lie.
 You can change the parameters and the return type slightly, if 

you follow certain rules



 Hoare's consequence rule says that a method can override a 
parent method as long as:
1. Its parameters are broader (or the same)
2. Its return value is narrower (or the same)

 In other words, it will take even more kinds of input but will 
give back fewer kinds of output



public class SandwichShop { 
public Sandwich getSandwich(Dollars dollars) {

return new Sandwich(dollars);
}

}

public class SubarmineSandwichShop extends SandwichShop {
@Override 
public SubmarineSandwich getSandwich(Money money) {

return new SubmarineSandwich(money);
}

}

BroaderNarrower



 Hoare's consequence rule applies to the exceptions that a 
method can throw as well

 If a method overrides a parent method, it can only throw 
exceptions that are the same or subtypes of the exceptions 
that the parent method throws

 Otherwise, someone might call the method on a child object 
and get exceptions they didn't expect



public class Vehicle { 
public Trip ride(String destination) throws

CrashException, NauseaException {
return new Trip(destination);

}
}

public class Helicopter extends Vehicle {
@Override 
public HelicopterTrip ride(String destination) throws

HelicopterCrashException {
return new HelicopterTrip(destination);

}
}

Narrower







 Review
 Look over chapters 1 – 6, 8 – 12, and 17



 Finish Project 1
 Due Friday!

 Exam 1 is Monday


	COMP 2000
	Last time
	Questions?
	Project 1
	An application of exception handling
	Application continued
	System.exit()
	Custom Exceptions
	Creating your own exceptions
	Creating an exception class
	Adding special information
	Getting information from exceptions
	Messages in exceptions
	Throwing Exceptions
	throw keyword
	Throwing exceptions
	Exception throwing example
	Exceptions and Inheritance
	Exceptions and inheritance
	Multiple catches with inheritance
	Rules of thumb
	Rules for overriding methods
	Hoare's consequence rule
	Hoare's consequence in action
	Application to exceptions
	Exceptions example
	Quiz
	Upcoming
	Next time…
	Reminders

